Serial Vs Parallel Dilution Method

When do I use the serial dilution technique instead of the parallel dilution technique? Another way to make dilutions is to use some of your existing stock solution to make a dilute solution, then use some of the dilute solution to make an even more dilute solution, then use some of that solution to make an even more dilute solution, and so on. When do I use the serial dilution technique instead of the parallel dilution technique? Another way to make dilutions is to use some of your existing stock solution to make a dilute solution, then use some of the dilute solution to make an even more dilute solution, then use some of that solution to make an even more dilute solution, and so on. Serial dilutions which enable you to perform the same procedure using less than 10 ml of diluent! Let’s think through a practice dilution: You will make several dilutions of a bacterial stock culture. For some dilutions, you will add 10µl of the more concentrated solution to 990µl of sterile diluent in a microfuge tube.

Learning Objective

Serial Vs Parallel Dilution Method
  • Calculate the concentration of a diluted solution.

Key Points

Serial vs parallel dilution method formula
  • Most commonly, a solution’s concentration is expressed in terms of mass percent, mole fraction, molarity, molality, and normality. When calculating dilution factors, it is important that the units of volume and concentration remain consistent.
  • Dilution calculations can be performed using the formula M1V1 = M2V2.
  • A serial dilution is a series of stepwise dilutions, where the dilution factor is held constant at each step.

Terms

  • dilutiona solution that has had additional solvent, such as water, added to make it less concentrated
  • serial dilutionstepwise dilution of a substance in solution

Dilution refers to the process of adding additional solvent to a solution to decrease its concentration. This process keeps the amount of solute constant, but increases the total amount of solution, thereby decreasing its final concentration. Dilution can also be achieved by mixing a solution of higher concentration with an identical solution of lesser concentration. Diluting solutions is a necessary process in the laboratory, as stock solutions are often purchased and stored in very concentrated forms. For the solutions to be usable in the lab (for a titration, for instance), they must be accurately diluted to a known, lesser concentration.

The volume of solvent needed to prepare the desired concentration of a new, diluted solution can be calculated mathematically. The relationship is as follows:

[latex]M_1V_1=M_2V_2[/latex]

M1 denotes the concentration of the original solution, and V1 denotes the volume of the original solution; M2 represents the concentration of the diluted solution, and V2 represents the final volume of the diluted solution. When calculating dilution factors, it is important that the units for both volume and concentration are the same for both sides of the equation.

Serial Vs Parallel Dilution Method Formula

Example

  • 175 mL of a 1.6 M aqueous solution of LiCl is diluted with water to a final volume of 1.0 L. What is the final concentration of the diluted solution?
  • [latex]M_1V_1=M_2V_2[/latex]
  • (1.6 M)(175 mL) = M2(1000 mL)
  • M2 = 0.28 M

Serial Dilutions

Serial dilutions involve diluting a stock or standard solution multiple times in a row. Typically, the dilution factor remains constant for each dilution, resulting in an exponential decrease in concentration. For example, a ten-fold serial dilution could result in the following concentrations: 1 M, 0.1 M, 0.01 M, 0.001 M, and so on. As is evidenced in this example, the concentration is reduced by a factor of ten in each step. Serial dilutions are used to accurately create extremely diluted solutions, as well as solutions for experiments that require a concentration curve with an exponential or logarithmic scale. Serial dilutions are widely used in experimental sciences, including biochemistry, pharmacology, microbiology, and physics.

Show Sources

Boundless vets and curates high-quality, openly licensed content from around the Internet. This particular resource used the following sources:

http://www.boundless.com/
Boundless Learning
CC BY-SA 3.0.

http://en.wikipedia.org/wiki/serial%20dilution
Wikipedia
CC BY-SA 3.0.

http://en.wiktionary.org/wiki/dilution
Wiktionary
CC BY-SA 3.0.

http://en.wikipedia.org/wiki/Serial_dilution
Wikipedia
CC BY-SA 3.0.

“Sunil Kumar Singh, Dilution. September 17, 2013.”

Bacterial Serial Dilution Method

http://cnx.org/content/m17123/latest/
OpenStax CNX
CC BY 3.0.

Serial Dilution Formula

http://commons.wikimedia.org/wiki/File:Dilution-concentration_simple_example.jpg
Wikimedia
CC BY-SA.